Struct std::collections::hash_map::HashMap1.0.0[][src]

pub struct HashMap<K, V, S = RandomState> { /* fields omitted */ }
Expand description

A hash map implemented with quadratic probing and SIMD lookup.

By default, HashMap uses a hashing algorithm selected to provide resistance against HashDoS attacks. The algorithm is randomly seeded, and a reasonable best-effort is made to generate this seed from a high quality, secure source of randomness provided by the host without blocking the program. Because of this, the randomness of the seed depends on the output quality of the system’s random number generator when the seed is created. In particular, seeds generated when the system’s entropy pool is abnormally low such as during system boot may be of a lower quality.

The default hashing algorithm is currently SipHash 1-3, though this is subject to change at any point in the future. While its performance is very competitive for medium sized keys, other hashing algorithms will outperform it for small keys such as integers as well as large keys such as long strings, though those algorithms will typically not protect against attacks such as HashDoS.

The hashing algorithm can be replaced on a per-HashMap basis using the default, with_hasher, and with_capacity_and_hasher methods. There are many alternative hashing algorithms available on crates.io.

It is required that the keys implement the Eq and Hash traits, although this can frequently be achieved by using #[derive(PartialEq, Eq, Hash)]. If you implement these yourself, it is important that the following property holds:

k1 == k2 -> hash(k1) == hash(k2)

In other words, if two keys are equal, their hashes must be equal.

It is a logic error for a key to be modified in such a way that the key’s hash, as determined by the Hash trait, or its equality, as determined by the Eq trait, changes while it is in the map. This is normally only possible through Cell, RefCell, global state, I/O, or unsafe code. The behavior resulting from such a logic error is not specified, but will not result in undefined behavior. This could include panics, incorrect results, aborts, memory leaks, and non-termination.

The hash table implementation is a Rust port of Google’s SwissTable. The original C++ version of SwissTable can be found here, and this CppCon talk gives an overview of how the algorithm works.

Examples

use std::collections::HashMap;

// Type inference lets us omit an explicit type signature (which
// would be `HashMap<String, String>` in this example).
let mut book_reviews = HashMap::new();

// Review some books.
book_reviews.insert(
    "Adventures of Huckleberry Finn".to_string(),
    "My favorite book.".to_string(),
);
book_reviews.insert(
    "Grimms' Fairy Tales".to_string(),
    "Masterpiece.".to_string(),
);
book_reviews.insert(
    "Pride and Prejudice".to_string(),
    "Very enjoyable.".to_string(),
);
book_reviews.insert(
    "The Adventures of Sherlock Holmes".to_string(),
    "Eye lyked it alot.".to_string(),
);

// Check for a specific one.
// When collections store owned values (String), they can still be
// queried using references (&str).
if !book_reviews.contains_key("Les Misérables") {
    println!("We've got {} reviews, but Les Misérables ain't one.",
             book_reviews.len());
}

// oops, this review has a lot of spelling mistakes, let's delete it.
book_reviews.remove("The Adventures of Sherlock Holmes");

// Look up the values associated with some keys.
let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
for &book in &to_find {
    match book_reviews.get(book) {
        Some(review) => println!("{}: {}", book, review),
        None => println!("{} is unreviewed.", book)
    }
}

// Look up the value for a key (will panic if the key is not found).
println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]);

// Iterate over everything.
for (book, review) in &book_reviews {
    println!("{}: \"{}\"", book, review);
}
Run

A HashMap with a known list of items can be initialized from an array:

use std::collections::HashMap;

let solar_distance = HashMap::from([
    ("Mercury", 0.4),
    ("Venus", 0.7),
    ("Earth", 1.0),
    ("Mars", 1.5),
]);
Run

HashMap implements an Entry API, which allows for complex methods of getting, setting, updating and removing keys and their values:

use std::collections::HashMap;

// type inference lets us omit an explicit type signature (which
// would be `HashMap<&str, u8>` in this example).
let mut player_stats = HashMap::new();

fn random_stat_buff() -> u8 {
    // could actually return some random value here - let's just return
    // some fixed value for now
    42
}

// insert a key only if it doesn't already exist
player_stats.entry("health").or_insert(100);

// insert a key using a function that provides a new value only if it
// doesn't already exist
player_stats.entry("defence").or_insert_with(random_stat_buff);

// update a key, guarding against the key possibly not being set
let stat = player_stats.entry("attack").or_insert(100);
*stat += random_stat_buff();
Run

The easiest way to use HashMap with a custom key type is to derive Eq and Hash. We must also derive PartialEq.

use std::collections::HashMap;

#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
    name: String,
    country: String,
}

impl Viking {
    /// Creates a new Viking.
    fn new(name: &str, country: &str) -> Viking {
        Viking { name: name.to_string(), country: country.to_string() }
    }
}

// Use a HashMap to store the vikings' health points.
let vikings = HashMap::from([
    (Viking::new("Einar", "Norway"), 25),
    (Viking::new("Olaf", "Denmark"), 24),
    (Viking::new("Harald", "Iceland"), 12),
]);

// Use derived implementation to print the status of the vikings.
for (viking, health) in &vikings {
    println!("{:?} has {} hp", viking, health);
}
Run

Implementations

Creates an empty HashMap.

The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.

Examples
use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
Run

Creates an empty HashMap with the specified capacity.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

Examples
use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::with_capacity(10);
Run

Creates an empty HashMap which will use the given hash builder to hash keys.

The created map has the default initial capacity.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples
use std::collections::HashMap;
use std::collections::hash_map::RandomState;

let s = RandomState::new();
let mut map = HashMap::with_hasher(s);
map.insert(1, 2);
Run

Creates an empty HashMap with the specified capacity, using hash_builder to hash the keys.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples
use std::collections::HashMap;
use std::collections::hash_map::RandomState;

let s = RandomState::new();
let mut map = HashMap::with_capacity_and_hasher(10, s);
map.insert(1, 2);
Run

Returns the number of elements the map can hold without reallocating.

This number is a lower bound; the HashMap<K, V> might be able to hold more, but is guaranteed to be able to hold at least this many.

Examples
use std::collections::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);
Run

An iterator visiting all keys in arbitrary order. The iterator element type is &'a K.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for key in map.keys() {
    println!("{}", key);
}
Run

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values() {
    println!("{}", val);
}
Run

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();

map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values_mut() {
    *val = *val + 10;
}

for val in map.values() {
    println!("{}", val);
}
Run

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (&'a K, &'a V).

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
}
Run

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (&'a K, &'a mut V).

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in &map {
    println!("key: {} val: {}", key, val);
}
Run

Returns the number of elements in the map.

Examples
use std::collections::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);
Run

Returns true if the map contains no elements.

Examples
use std::collections::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());
Run

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

Examples
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());
Run
🔬 This is a nightly-only experimental API. (hash_drain_filter #59618)

Creates an iterator which uses a closure to determine if an element should be removed.

If the closure returns true, the element is removed from the map and yielded. If the closure returns false, or panics, the element remains in the map and will not be yielded.

Note that drain_filter lets you mutate every value in the filter closure, regardless of whether you choose to keep or remove it.

If the iterator is only partially consumed or not consumed at all, each of the remaining elements will still be subjected to the closure and removed and dropped if it returns true.

It is unspecified how many more elements will be subjected to the closure if a panic occurs in the closure, or a panic occurs while dropping an element, or if the DrainFilter value is leaked.

Examples

Splitting a map into even and odd keys, reusing the original map:

#![feature(hash_drain_filter)]
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
let drained: HashMap<i32, i32> = map.drain_filter(|k, _v| k % 2 == 0).collect();

let mut evens = drained.keys().copied().collect::<Vec<_>>();
let mut odds = map.keys().copied().collect::<Vec<_>>();
evens.sort();
odds.sort();

assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);
Run

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

Examples
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.clear();
assert!(a.is_empty());
Run

Returns a reference to the map’s BuildHasher.

Examples
use std::collections::HashMap;
use std::collections::hash_map::RandomState;

let hasher = RandomState::new();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &RandomState = map.hasher();
Run

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows usize.

Examples
use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
map.reserve(10);
Run

Tries to reserve capacity for at least additional more elements to be inserted in the given HashMap<K, V>. The collection may reserve more space to avoid frequent reallocations.

Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

Examples
use std::collections::HashMap;

let mut map: HashMap<&str, isize> = HashMap::new();
map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");
Run

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);
Run

Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

If the current capacity is less than the lower limit, this is a no-op.

Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);
Run

Gets the given key’s corresponding entry in the map for in-place manipulation.

Examples
use std::collections::HashMap;

let mut letters = HashMap::new();

for ch in "a short treatise on fungi".chars() {
    let counter = letters.entry(ch).or_insert(0);
    *counter += 1;
}

assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);
Run

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);
Run

Returns the key-value pair corresponding to the supplied key.

The supplied key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);
Run

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);
Run

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
    *x = "b";
}
assert_eq!(map[&1], "b");
Run

Inserts a key-value pair into the map.

If the map did not have this key present, None is returned.

If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be == without being identical. See the module-level documentation for more.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");
Run
🔬 This is a nightly-only experimental API. (map_try_insert #82766)

Tries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.

If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.

Examples

Basic usage:

#![feature(map_try_insert)]

use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.try_insert(37, "a").unwrap(), &"a");

let err = map.try_insert(37, "b").unwrap_err();
assert_eq!(err.entry.key(), &37);
assert_eq!(err.entry.get(), &"a");
assert_eq!(err.value, "b");
Run

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);
Run
1.27.0[src]

pub fn remove_entry<Q: ?Sized>(&mut self, k: &Q) -> Option<(K, V)> where
    K: Borrow<Q>,
    Q: Hash + Eq

Removes a key from the map, returning the stored key and value if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);
Run

Retains only the elements specified by the predicate.

In other words, remove all pairs (k, v) such that f(&k, &mut v) returns false. The elements are visited in unsorted (and unspecified) order.

Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
map.retain(|&k, _| k % 2 == 0);
assert_eq!(map.len(), 4);
Run

Creates a consuming iterator visiting all the keys in arbitrary order. The map cannot be used after calling this. The iterator element type is K.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

let mut vec: Vec<&str> = map.into_keys().collect();
// The `IntoKeys` iterator produces keys in arbitrary order, so the
// keys must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, ["a", "b", "c"]);
Run

Creates a consuming iterator visiting all the values in arbitrary order. The map cannot be used after calling this. The iterator element type is V.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

let mut vec: Vec<i32> = map.into_values().collect();
// The `IntoValues` iterator produces values in arbitrary order, so
// the values must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [1, 2, 3]);
Run

pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S>

🔬 This is a nightly-only experimental API. (hash_raw_entry #56167)

Creates a raw entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.

Raw entries are useful for such exotic situations as:

  • Hash memoization
  • Deferring the creation of an owned key until it is known to be required
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Because raw entries provide much more low-level control, it’s much easier to put the HashMap into an inconsistent state which, while memory-safe, will cause the map to produce seemingly random results. Higher-level and more foolproof APIs like entry should be preferred when possible.

In particular, the hash used to initialized the raw entry must still be consistent with the hash of the key that is ultimately stored in the entry. This is because implementations of HashMap may need to recompute hashes when resizing, at which point only the keys are available.

Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become “lost” if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn’t happen (within the limits of memory-safety).

pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S>

🔬 This is a nightly-only experimental API. (hash_raw_entry #56167)

Creates a raw immutable entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.

This is useful for

  • Hash memoization
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Unless you are in such a situation, higher-level and more foolproof APIs like get should be preferred.

Immutable raw entries have very limited use; you might instead want raw_entry_mut.

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Creates an empty HashMap<K, V, S>, with the Default value for the hasher.

Extends a collection with the contents of an iterator. Read more

🔬 This is a nightly-only experimental API. (extend_one #72631)

Extends a collection with exactly one element.

🔬 This is a nightly-only experimental API. (extend_one #72631)

Reserves capacity in a collection for the given number of additional elements. Read more

Inserts all new key-values from the iterator and replaces values with existing keys with new values returned from the iterator.

Extends a collection with the contents of an iterator. Read more

🔬 This is a nightly-only experimental API. (extend_one #72631)

Extends a collection with exactly one element.

🔬 This is a nightly-only experimental API. (extend_one #72631)

Reserves capacity in a collection for the given number of additional elements. Read more

Examples
use std::collections::HashMap;

let map1 = HashMap::from([(1, 2), (3, 4)]);
let map2: HashMap<_, _> = [(1, 2), (3, 4)].into();
assert_eq!(map1, map2);
Run

Creates a value from an iterator. Read more

Returns a reference to the value corresponding to the supplied key.

Panics

Panics if the key is not present in the HashMap.

The returned type after indexing.

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

Creates a consuming iterator, that is, one that moves each key-value pair out of the map in arbitrary order. The map cannot be used after calling this.

Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

// Not possible with .iter()
let vec: Vec<(&str, i32)> = map.into_iter().collect();
Run

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Performs the conversion.

Performs the conversion.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into #41263)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.