Functions
Functions are prevalent in Rust code. You’ve already seen one of the most
important functions in the language: the main
function, which is the entry
point of many programs. You’ve also seen the fn
keyword, which allows you to
declare new functions.
Rust code uses snake case as the conventional style for function and variable names. In snake case, all letters are lowercase and underscores separate words. Here’s a program that contains an example function definition:
Filename: src/main.rs
fn main() { println!("Hello, world!"); another_function(); } fn another_function() { println!("Another function."); }
Function definitions in Rust start with fn
and have a set of parentheses
after the function name. The curly brackets tell the compiler where the
function body begins and ends.
We can call any function we’ve defined by entering its name followed by a set
of parentheses. Because another_function
is defined in the program, it can be
called from inside the main
function. Note that we defined another_function
after the main
function in the source code; we could have defined it before
as well. Rust doesn’t care where you define your functions, only that they’re
defined somewhere.
Let’s start a new binary project named functions to explore functions
further. Place the another_function
example in src/main.rs and run it. You
should see the following output:
$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
Finished dev [unoptimized + debuginfo] target(s) in 0.28s
Running `target/debug/functions`
Hello, world!
Another function.
The lines execute in the order in which they appear in the main
function.
First, the “Hello, world!” message prints, and then another_function
is
called and its message is printed.
Function Parameters
Functions can also be defined to have parameters, which are special variables that are part of a function’s signature. When a function has parameters, you can provide it with concrete values for those parameters. Technically, the concrete values are called arguments, but in casual conversation, people tend to use the words parameter and argument interchangeably for either the variables in a function’s definition or the concrete values passed in when you call a function.
The following rewritten version of another_function
shows what parameters
look like in Rust:
Filename: src/main.rs
fn main() { another_function(5); } fn another_function(x: i32) { println!("The value of x is: {}", x); }
Try running this program; you should get the following output:
$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
Finished dev [unoptimized + debuginfo] target(s) in 1.21s
Running `target/debug/functions`
The value of x is: 5
The declaration of another_function
has one parameter named x
. The type of
x
is specified as i32
. When 5
is passed to another_function
, the
println!
macro puts 5
where the pair of curly brackets were in the format
string.
In function signatures, you must declare the type of each parameter. This is a deliberate decision in Rust’s design: requiring type annotations in function definitions means the compiler almost never needs you to use them elsewhere in the code to figure out what type you mean.
When you want a function to have multiple parameters, separate the parameter declarations with commas, like this:
Filename: src/main.rs
fn main() { print_labeled_measurement(5, 'h'); } fn print_labeled_measurement(value: i32, unit_label: char) { println!("The measurement is: {}{}", value, unit_label); }
This example creates a function named print_labeled_measurement
with two
parameters. The first parameter is named value
and is an i32
. The second is
named unit_label
and is type char
. The function then prints text containing
both the value
and the unit_label
.
Let’s try running this code. Replace the program currently in your functions
project’s src/main.rs file with the preceding example and run it using cargo run
:
$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
Finished dev [unoptimized + debuginfo] target(s) in 0.31s
Running `target/debug/functions`
The measurement is: 5h
Because we called the function with 5
as the value for value
and 'h'
as
the value for unit_label
, the program output contains those values.
Function Bodies Contain Statements and Expressions
Function bodies are made up of a series of statements optionally ending in an expression. So far, we’ve only covered functions without an ending expression, but you have seen an expression as part of a statement. Because Rust is an expression-based language, this is an important distinction to understand. Other languages don’t have the same distinctions, so let’s look at what statements and expressions are and how their differences affect the bodies of functions.
We’ve actually already used statements and expressions. Statements are instructions that perform some action and do not return a value. Expressions evaluate to a resulting value. Let’s look at some examples.
Creating a variable and assigning a value to it with the let
keyword is a
statement. In Listing 3-1, let y = 6;
is a statement.
Filename: src/main.rs
fn main() { let y = 6; }
Function definitions are also statements; the entire preceding example is a statement in itself.
Statements do not return values. Therefore, you can’t assign a let
statement
to another variable, as the following code tries to do; you’ll get an error:
Filename: src/main.rs
fn main() {
let x = (let y = 6);
}
When you run this program, the error you’ll get looks like this:
$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
error[E0658]: `let` expressions in this position are experimental
--> src/main.rs:2:14
|
2 | let x = (let y = 6);
| ^^^^^^^^^
|
= note: see issue #53667 <https://github.com/rust-lang/rust/issues/53667> for more information
= help: you can write `matches!(<expr>, <pattern>)` instead of `let <pattern> = <expr>`
error: expected expression, found statement (`let`)
--> src/main.rs:2:14
|
2 | let x = (let y = 6);
| ^^^^^^^^^
|
= note: variable declaration using `let` is a statement
warning: unnecessary parentheses around assigned value
--> src/main.rs:2:13
|
2 | let x = (let y = 6);
| ^^^^^^^^^^^ help: remove these parentheses
|
= note: `#[warn(unused_parens)]` on by default
For more information about this error, try `rustc --explain E0658`.
warning: `functions` (bin "functions") generated 1 warning
error: could not compile `functions` due to 2 previous errors; 1 warning emitted
The let y = 6
statement does not return a value, so there isn’t anything for
x
to bind to. This is different from what happens in other languages, such as
C and Ruby, where the assignment returns the value of the assignment. In those
languages, you can write x = y = 6
and have both x
and y
have the value
6
; that is not the case in Rust.
Expressions evaluate to a value and make up most of the rest of the code that
you’ll write in Rust. Consider a math operation, such as 5 + 6
, which is an
expression that evaluates to the value 11
. Expressions can be part of
statements: in Listing 3-1, the 6
in the statement let y = 6;
is an
expression that evaluates to the value 6
. Calling a function is an
expression. Calling a macro is an expression. The block that we use to create
new scopes, {}
, is an expression, for example:
Filename: src/main.rs
fn main() { let y = { let x = 3; x + 1 }; println!("The value of y is: {}", y); }
This expression:
{
let x = 3;
x + 1
}
is a block that, in this case, evaluates to 4
. That value gets bound to y
as part of the let
statement. Note the x + 1
line without a semicolon at
the end, which is unlike most of the lines you’ve seen so far. Expressions do
not include ending semicolons. If you add a semicolon to the end of an
expression, you turn it into a statement, which will then not return a value.
Keep this in mind as you explore function return values and expressions next.
Functions with Return Values
Functions can return values to the code that calls them. We don’t name return
values, but we do declare their type after an arrow (->
). In Rust, the return
value of the function is synonymous with the value of the final expression in
the block of the body of a function. You can return early from a function by
using the return
keyword and specifying a value, but most functions return
the last expression implicitly. Here’s an example of a function that returns a
value:
Filename: src/main.rs
fn five() -> i32 { 5 } fn main() { let x = five(); println!("The value of x is: {}", x); }
There are no function calls, macros, or even let
statements in the five
function—just the number 5
by itself. That’s a perfectly valid function in
Rust. Note that the function’s return type is specified too, as -> i32
. Try
running this code; the output should look like this:
$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
Finished dev [unoptimized + debuginfo] target(s) in 0.30s
Running `target/debug/functions`
The value of x is: 5
The 5
in five
is the function’s return value, which is why the return type
is i32
. Let’s examine this in more detail. There are two important bits:
first, the line let x = five();
shows that we’re using the return value of a
function to initialize a variable. Because the function five
returns a 5
,
that line is the same as the following:
#![allow(unused)] fn main() { let x = 5; }
Second, the five
function has no parameters and defines the type of the
return value, but the body of the function is a lonely 5
with no semicolon
because it’s an expression whose value we want to return.
Let’s look at another example:
Filename: src/main.rs
fn main() { let x = plus_one(5); println!("The value of x is: {}", x); } fn plus_one(x: i32) -> i32 { x + 1 }
Running this code will print The value of x is: 6
. But if we place a
semicolon at the end of the line containing x + 1
, changing it from an
expression to a statement, we’ll get an error.
Filename: src/main.rs
fn main() {
let x = plus_one(5);
println!("The value of x is: {}", x);
}
fn plus_one(x: i32) -> i32 {
x + 1;
}
Compiling this code produces an error, as follows:
$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)
error[E0308]: mismatched types
--> src/main.rs:7:24
|
7 | fn plus_one(x: i32) -> i32 {
| -------- ^^^ expected `i32`, found `()`
| |
| implicitly returns `()` as its body has no tail or `return` expression
8 | x + 1;
| - help: consider removing this semicolon
For more information about this error, try `rustc --explain E0308`.
error: could not compile `functions` due to previous error
The main error message, “mismatched types,” reveals the core issue with this
code. The definition of the function plus_one
says that it will return an
i32
, but statements don’t evaluate to a value, which is expressed by ()
,
the unit type. Therefore, nothing is returned, which contradicts the function
definition and results in an error. In this output, Rust provides a message to
possibly help rectify this issue: it suggests removing the semicolon, which
would fix the error.