NAME

rxgen - Stub generator for the Rx remote procedure call package

SYNOPSIS

rxgen [-h | -c | -C | -S | -r] [-dkp] [-I dir] [-P prefix] [-o outfile] [infile]

DESCRIPTION

rxgen is a tool that generates C code to implement the Rx RPC protocol; it takes as input a description of an application interface similar to C and produces a number of server and/or client stub routines to be linked with RPC-based programs. These stubs allow programs to invoke remote procedures through local procedure calls. rxgen is based on Sun's rpcgen (version 3.9) but does not maintain compatibility with rpcgen RPC descriptions.

OPTIONS

rxgen operates in several different modes. The generated output files can be produced individually (using one of -h, -c, -C, or -S) or collectively. All output files are created when the default is used (i.e., no options), or the output is limited to the server stubs (-C and -S) when the -r flag is used. The following describes the types of generated output files (for simplicity, filename refers to the main output filename):

-h

Generate C data definitions (a header file) from standard RPCL definitions (default extension: filename.h).

-c

Compile the XDR routines required to serialize the protocol described by RPCL. Generate XDR routines for all declarations (default extension: filename.xdr.c).

-C

Generate all the client-side stub routines (default extension: filename.cs.c). Calling a routine in this file will cause the arguments to be packed up and sent via Rx (or R).

-S

Generate all the server-side stub routines (default extension: filename.ss.c). Arguments are unpacked, and the corresponding server routine is called.

-r

Generate the two default extension files produced by the -C and -S options.

The following options can be used on any combination of rxgen calls:

-k

Must be specified when the generated code is intended to be used by the kernel; special "includes" and other specifics are produced when the target output is for the kernel.

-p

Package combination flag: when multiple packages are included within a single specification file, a single Execute Request routine will be used for all of them as a result of this flag. The default is to generate individual Execute Request stubs for each package.

-I dir

Similar to the -I flag in the C compiler (cc). This flag is passed to the pre-processor (cpp) so that directory dir is searched before the standard lookup list for #include files. As expected, multiple -I flags can be used simultaneously.

-P prefix

The prefix string following this switch is prepended to all generated output files; useful when multiple runs want to produce different versions of the same interface (say, kernel and non-kernel versions).

-d

Debugging mode; only needed when rxgen is to be debugged (say, via dbx).

-o outfile

Specify the name of the output file. If none is specified, the standard output is used (-c, -h, -C, and -S modes only). Note that if an output file is specified in a multi-output file option (such as the default, or with option -r), then the outfile replaces the name generated by default (which is based on the configuration's main file name).

rxgen SYNTAX SUMMARY

    Specification file:

        <Package description option> |
        <Prefix description option> |
        <StartingOpcode description option> |
        <SplitPrefix description option> |
        <Procedure description option> |
        <RPCL language description option>

    <Package description option>:

        "package" <Package_ident>

    <Prefix description option>:

        "prefix" <Prefix_ident>

    <StartingOpcode description option>:

        "startingopcode" <constant>

    <SplitPrefix description option>:

        "splitprefix" <split options> ";"

    <Split options>:

        "IN =" <Start_prefix_ident> "|"
        "OUT =" <End_prefix_ident> "|"
        <Split options>

    <Procedure description option>:

        ["proc"] [<Procedure_ident>] [<ServerStub_ident>]
            <Argument list> ["split" | "multi"]
            ["=" <Opcode_ident>] ";"

    <Argument list>:

        "(" <Argument definition> <Comma_joined argument> ")"

    <Argument definition>:

        <Direction option> <Standard RPCL type decl> <Arg_ident>
            ["<" <Max_size> ">" | "[" <Max_size> "]"] | NULL

    <Comma_joined argument>:

        "," <Argument definition> | NULL

    <Direction option>:

        "IN" | "OUT" | "INOUT" | NULL

    <Max_size>:

        <constant> | NULL

    <Package_ident>:
    <Prefix_ident>:
    <String_ident>:
    <Start_prefix_ident>:
    <End_prefix_ident>:
    <Procedure_ident>:
    <ServerStub_ident>:
    <Arg_ident>:
    <Opcode_ident>:

        <identifier>

    <RPCL language description option>:
    <Standard RPCL type decl>:

        Sun's RPCL language syntax (see rpcgen(1))

rxgen COMMANDS

Comments and Preprocessing

The input interface may contain preprocessor directives which are passed through the C preprocessor (i.e. cpp). Since the preprocessor runs on all input files before they are actually interpreted by rxgen, all cpp directives (#include, #ifdefs, #defines, etc.) are legal and welcomed within an rxgen input file. Of course, none of these preprocessor directives will be included in any of the generated files. To facilitate distinctions between the different types of output files, rxgen defines certain special cpp symbols for use by the rxgen programmer. These are RPC_HDR (defined when compiling into header, filename.h, files), RPC_XDR (defined when compiling into xdr, filename.xdr.c, files), RPC_CLIENT (defined when compiling into client stubs, filename.cs.c, files), and RPC_SERVER (defined when compiling into server stubs, filename.ss.c, files).

In addition, rxgen does a little preprocessing of its own. Any line beginning with % is passed directly into the output file, uninterpreted by rxgen. For a more heavy en masse dumping of uninterpreted code, it would be advised to include all such code in an #include file and pass it in preceded by %. The input interface may also contain any C-style comments which are, of course, ignored. Interpretation is token-based, thus special line-orientation of separate statements is not necessary. rxgen also provides a quite rich and helpful set of error reports, identifying them by exact line location and error type. Also, rxgen will automatically generate #include lines for standard include files, such as rx/xdr.h and rx/rx.h, along with the generated header file from this interface.

Prefixing stub procedures

The package statement tells rxgen the name of the interface package. It is used for prefixing the naming of all generated stub routines and the execute request procedure. For example:

    package AFS_

causes the execute request procedure to be named AFS_ExecuteRequest (Warning: in the older version an additional _ was appended after the package name to the ExecuteRequest name; thus make sure you don't have an ExecuteRequest interface routine) and a given stub routine, say Fetch, to be actually named AFS_Fetch. Multiple package statements (current maximum size is 10) per configuration are permitted and are useful when multiple sets of interfaces are implemented (see the example at the end). Note that in such cases, use of the -p flag results in the generation of just one ExecuteRequest procedure which recognizes the multiple interfaces and whose name is prefixed by the first package statement. In the default case, independent ExecuteRequest procedures will be created for each packaged group of remote procedure calls.

The prefix statement supplies a name to prepend to all calls to remote procedure names in the ExecuteRequest stub routine. It is useful when the server makes RPC calls to other servers (say, for debugging purposes). For example:

    prefix S

causes the name S to be prepended to the name of all routines called from the server stubs. The server can then call the original name and get the client stubs.

rxgen procedure declaration

The proc statement is the most common (and meaningful) in the rxgen interface. Its syntax description is:

        [proc] [<proc_name>] [<server_stub>] (<arg>, ..., <arg>)
            [split | multi] [= <opcode>] ;

where:

OBSOLETE rxgen FEATURES

Although the following rxgen commands are still in effect, they will soon be removed since there are better alternatives. DO NOT USE THEM!

The special statement is a temporary hack used to handle certain inefficiencies of standard xdr routines to handle some user-customized declarations. In particular, this applies to a string pointer specified as part of a declaration. For example,

    special struct BBS SeqBody;

tells rxgen that the entry SeqBody in the user-defined BBS xdr routine is a string (note that more than one string can be "special" per structure -- multiple ones are separated by commas); it will thus allocate and de-allocate space properly in the server-generated stubs that contain this structure as an IN or INOUT parameter.

A better alternative to special is the customized statement, which is simply the customized token followed by the regular declaration of a struct based on the RPCL rules. In this case, the declaration will be included in the generated header file (-h option) but no xdr routine will be generated for this structure -- the user will supply this. All pointer entries in this structure will be remembered so when the structure is used as an IN or INOUT in the server stub, no core leaks will occur. For example, consider

    customized struct CBS {
        long Seqlen;
        char *SeqBody;
    }

The xdr_CBS routine would be provided by the user where during the DECODE xdr opcode, appropriate space for the SeqBody string is allocated. Similarly, that space is freed during the FREE xdr opcode.

Note: Old style "Array parameter specifications" are not supported any more.

EXAMPLES

In case there are some requirements not available by the current RPC language, one can customize some XDR routines by leaving those data types undefined. For every data type that is undefined, it will be assumed that a routine exists with the name xdr_ prepended to it. A selected set of rxgen features is presented below, but for a more comprehensive one (unions, complex examples, etc) please refer to the rpcgen Programming Guide and eXternal Data Representation: Sun Technical Notes.

Typedefs

The RPC typedef statement is identical to the C typedef (i.e. typedef <declaration>). By default, most user declarations (i.e. structs, unions, etc) are automatically typedef'ed by rxgen. Since it makes parsing simpler, its usage is recommended by rxgen scripts.

Strings

The C char * string convention is kind of ambiguous, since it is usually intended to mean a null-terminated string of characters, but it could also represent a pointer to a single character, a pointer to an array of characters, etc. In the RPC language, a null-terminated string is unambiguously called a "string". Examples,

    string bigname<>;
    string name<MAXNAMELEN>;
    typedef string volname<MAXVOLNAME>;

Notice that the maximum size of string can be arbitrary (like bigname above) or, preferably, or specified in angle brackets (i.e. name and volname above). In practice, one should always use only bounded strings in interfaces. A sample calling proc using the declarations above would be:

    GetEntryByName (IN volname name, 
        OUT struct vldbentry *entry) = VL_GETENTRYBYNAME;

or, of course,

    GetEntryByName (IN string volname<MAXVOLNAME>,
        OUT struct vldbentry *entry) = VL_GETENTRYBYNAME;

It is very important for the user to understand when the string parameters should be allocated and/or freed by the his/her client and/or server programs. A short analysis on string parameters handling follows (note that a similar method is used for the handling of variable length arrays as it will be shown later on):

Note that for INOUT and OUT string parameters, in both the client and server sides their arguments must be char of pointers (i.e. char **).

Pointers

Pointer declarations in RPC are also exactly as they are in C (i.e. struct single_vldbentry *vldblist;). Of course, one can't send pointers over the network, but one can use XDR pointers for sending recursive data types such as lists and trees (an example of a linked list will be demonstrated shortly).

Arrays

Fixed arrays are just like standard C array declarations (i.e. struct UpdateEntry entries[20]) without any side effect problems in rxgen. Since variable-length arrays have no explicit syntax in C, the angle-brackets are used for it and the array declarations are actually compiled into "struct"s. For example, declarations such as:

    const   MAXBULKSIZE     = 10000;
    const   MAXENTRIES      = 100;
    opaque  bulk<MAXBULKSIZE>;           /* At most 10000 items */
    int     hosts<>;                     /* any number of items */
    typedef vldbentry blkentries<100>;   /* Preferable array decl */

are compiled into the following structs:

    struct {
        u_int   bulk_len;       /* no of items */
        char    *bulk_val;      /* pointer to array */
    } bulk;

for the bulk array, and similarly for the blkentries<100> array,

    struct {
        u_int      blkentries_len;   /* no of items in array */
        vldbentry  *blkentries_val;  /* pointer to array */
    } blkentries;

Therefore the user should be aware of the "magically" generated structure entries such as the number of items in the array (<array_name>_len) and the pointer to the array (<array_name>_val) since some of the entries will have to be filled in from the client/server programs. A sample proc would be:

    typedef vldbentry blkentries<MAXENTRIES>;
    proc GetBlk (OUT blkentries *vlentries) = VL_GETBLK;

or, more directly,

    GetBlk(OUT vldbentry vlentries<MAXENTRIES>) = VL_GETBLK;

Note that although the latest method is preferable since one does not have to first use the typedef statement (and admittedly, programmers prefer avoiding typedefs), one should realize that rxgen does the structure expansion and the xdr creation implicitly; therefore the user should be aware of the vldbentries_val and vldbentries_len fields as before (see following examples).

Array example I (least desirable)

Procedure declaration in the interface configuration:

    proc ListAttributes (IN vldblistbyattributes *attributes, 
                 INOUT blkentries *vldbentries) = VL_LISTATTRIBUTES;

Sample CLIENT code:

    blkentries entries, *pnt;
    entries.blkentries_len = 10;   /* max # returned entries */
    entries.blkentries_val = (vldbentry *)malloc(LEN);
                                   /* It must be set */

    code = VL_ListAttributes(&attributes, &entries);
    if (!code) {
        pnt = entries.blkentries_val;
        for (i=0; i < entries.blkentries_len; i++, pnt++)
                display_vldbentry(pnt);
        /* Make sure you free the allocated space */
        free((char *)entries.blkentries_val);   
    }

Sample SERVER code:

    VL_ListAttributes(attributes, entries)
    {
        vldbentry *singleentry = entries->blkentries_val;
        entries->blkentries_len = 0;

        while (copy_to_vldbentry(&vlentry, singleentry))
            singleentry++, vldbentries->entries_len++;
    }

Although this method for variable-size arrays works fine, there are some major drawbacks. The array parameter (i.e. vldbentries above) must be declared as INOUT since we need to pass the max length of the expected returned array; more importantly, a big (depending on the value of _len) chunk of junk code is going to be transferred to the server as result of the IN(out) side-effect of the array. It's an easy and convenient method if the returned array size can be predicted from the start and when the size is quite high. This method is included as an example of erroneous use (and abuse) of rxgen and should not be used.

Array example II (Desirable method)

Procedure declaration in the interface configuration (using Example I above):

    proc ListAttributes (IN vldblistbyattributes *attributes, 
        OUT blkentries *vldbentries) = VL_LISTATTRIBUTES;

Sample CLIENT code:

    blkentries entries, *pnt;

    code = VL_ListAttributes(&attributes, &entries);
    if (!code) {
        pnt = entries.blkentries_val;
        for (i=0; i < entries.blkentries_len; i++, pnt++)
                display_vldbentry(pnt);
        /* Make sure you free the allocated space (by rxgen) */
        free((char *)entries.blkentries_val);   
    }

Sample SERVER code:

    VL_ListAttributes(attributes, entries)
    {
        vldbentry *singleentry;
        entries->blkentries_len = 0;
        singleentry = entries->blkentries_val
            = (vldbentry *)malloc(MAXENTRIES * sizeof(vldbentry));

        while (copy_to_vldbentry(&vlentry, singleentry))
                singleentry++, vldbentries->entries_len++;
    }

This is the best (and simplest) way of using variable-size arrays as an output parameter. It is the responsibility of the server-side stub to malloc() the adequate space which is automatically freed by the rxgen stub; the client side should free the space allocated by the rxgen-calling stub.

Array example III (Linked Lists)

Considering the following 3 declarations (could have applied some optimizations) in the configuration file:

    typedef struct single_vldbentry *vldblist;
    struct single_vldbentry {
        vldbentry vlentry;
        vldblist  next_vldb;
    };

    struct vldb_list {
        vldblist node;
    };

and the rxgen procedure declaration:

    LinkedList (IN vldblistbyattributes *attributes, 
        OUT vldb_list *linkedentries) = VL_LINKEDLIST;

Sample CLIENT code:

    vldb_list       linkedvldbs;
    vldblist        vllist, vllist1;

    bzero(&linkedvldbs, sizeof(vldb_list));
    code = VL_LinkedList(&attributes, &nentries, &linkedvldbs);
    if (!code) {
        printf("We got %d vldb entries\n", nentries);
        for (vllist = linkedvldbs.node; vllist; vllist = vllist1) {
            vllist1 = vllist->next_vldb;
            display_entry(&vllist->vlentry);
            free((char *)vllist);
        }
    }

Sample SERVER code:

    VL_LinkedList(rxcall, attributes, nentries, linkedvldbs);
    {
        vldblist vllist, *vllistptr = &linkedvldbs->node;
        while (...) {
            vllist = *vllistptr
                = (single_vldbentry *)malloc (sizeof (single_vldbentry));
            copy_to_vldbentry(&tentry, &vllist->vlentry);
            nentries++;     
            vllistptr = &vllist->next_vldb;
        };
        *vllistptr = NULL;
    }

Using a linked list offers many advantages: Nothing is passed to the server (the parameter is OUT), no additional overhead is involved, and the caller doesn't have to explicitly prepare for an arbitrary return size. A drawback is that the caller has the responsibility of malloc() (on the server) and free (on the client) of each entry (to avoid unwanted core-leaks). Another drawback is that since it's a recursive call, the C stack will grow linearly with respect to the number of nodes in the list (so it's wise to increase the Rx LWP stack if huge amounts of data are expected back -- default stack size is 4K). The advantages should outweigh the disadvantages here.

It's important to pay attention to the comments of the three array examples above particularly when they're references to when the user should allocate/free space for the variable length arrays. The mechanism is very similar to the handling of strings thus you might need to review the strings section above; note that the linked lists are handled somewhat differently...

Miscellaneous examples

Below is an abbreviated version of a random interface file which shows some of the common cases.

    /* Declaration of all structures used by the R.xg script interface */

    struct AFSFid {
        unsigned long Volume;
        unsigned long Vnode;
        unsigned long Unique;
    };

    typedef long ViceDataType;

    /* Note that TEST would be equivalent to "HEADER" only during the 
       processing of the header, *.h, file */

    #ifdef RPC_HDR
    #define TEST "HEADER"
    #else
    #define TEST "REST"
    #endif

    /* This is the standard *.xg specification file */

    package AFS_
    splitprefix IN=BEFORE_ OUT=AFTER_;
    Prefix Test

    proc Remove(IN struct AFSFid *Did, IN string volname<64>,
        OUT struct AFSStatus *Status) = AFS_REMOVE;

    DisconnectFS AUX_disconnectFS() = AFS_DISCONNECTFS;

    proc GetVolumeInfo(IN string Vid, 
        OUT struct VolumeInfo *Info) = AFS_GETVOLUMEINFO;

    /* You could have more than an interface per configuration */

    package VOTE_

    /* Using the "multi" feature; thus VOTE_Beacon can be called as an 
       multi-Rx call or as a regular call */

    Beacon (IN long state, long voteStart, 
        net_version *version, net_tid *tid) 
        multi = VOTE_BEACON;

    package DISK_

    /* Using the "split" feature */

    SendFile (IN long file, long offset, 
        long length, net_version *version) 
        split = DISK_SENDFILE;

Output of an actual interface configuration

We'll demonstrate some of the actual output generated by rxgen by following an abbreviated actual interface configuration.

Configuration file

Contents of the interface configuration file (vldbint.xg):

    package VL_
    #include "vl_opcodes.h"   /* The opcodes are included here */
    %#include "vl_opcodes.h"  /* directly to other places */

    /* Current limitations on parameters that affect other packages
       (i.e. volume) */

    const   MAXNAMELEN      =       65;
    const   MAXNSERVERS     =       8;
    const   MAXTYPES        =       3;

    /* External (visible) representation of an individual vldb entry */

    struct vldbentry {
        char    name[MAXNAMELEN];       
        long    volumeType;             
        long    nServers;               
        long    serverNumber[MAXNSERVERS];
        long    serverPartition[MAXNSERVERS];
        long    serverFlags[MAXNSERVERS];
        u_long  volumeId[MAXTYPES];     
        long    flags;                  
    };

    typedef struct single_vldbentry  *vldblist;
    struct single_vldbentry {
        vldbentry VldbEntry;
        vldblist next_vldb;
    };

    struct vldb_list {
        vldblist node;
    };

    /* vldb interface calls */

    CreateEntry     (IN long Volid, 
                    vldbentry *newentry) = VLCREATEENTRY;

    GetEntryByName  (IN string volumename<MAXNAMELEN>, 
                    OUT vldbentry *entry) = VLGETENTRYBYNAME;

    GetNewVolumeId  (IN long bumpcount,
                    OUT long *newvolumid) = VLGETNEWVOLUMEID;

    ReplaceEntry    (IN long Volid, 
                    long voltype,
                    vldbentry *newentry,
                    long ReleaseType) multi = VLREPLACEENTRY;

    ListAttributes  (IN VldbListByAttributes *attributes, 
                    OUT long *nentries, 
                    OUT vldbentry bulkentries<MAXVLDBLEN>) 
                    = VLLISTATTRIBUTES;

    LinkedList      (IN VldbListByAttributes *attributes, 
                    OUT long *nentries, 
                    OUT vldb_list *linkedentries) = VLLINKEDLIST;

For a detailed description on the Rx-related calls inside the generated stubs (i.e., rx_NewCall(), rx_EndCall()), along with details on what happens inside certain calls (like xdrrx_create()) please refer to the Rx documentation. Typing rxgen vldbint.xg will result in the creation of four files: vldbint.h, vldbint.xdr.c, vldbint.cs.c and vldbint.ss.c. A closer look at these files follows.

Header file (vldbint.h)

    /* Machine generated file -- Do NOT edit */

    #include "vl_opcodes.h"  /* directly to other places */
    #define MAXNAMELEN 65
    #define MAXNSERVERS 8
    #define MAXTYPES 3

    struct vldbentry {
        char name[MAXNAMELEN];
        long volumeType;
        long nServers;
        long serverNumber[MAXNSERVERS];
        long serverPartition[MAXNSERVERS];
        long serverFlags[MAXNSERVERS];
        u_long volumeId[MAXTYPES];
        long flags;
    };
    typedef struct vldbentry vldbentry;
    bool_t xdr_vldbentry();

    typedef struct single_vldbentry *vldblist;
    bool_t xdr_vldblist();

    struct single_vldbentry {
        vldbentry VldbEntry;
        vldblist next_vldb;
    };
    typedef struct single_vldbentry single_vldbentry;
    bool_t xdr_single_vldbentry();

    struct vldb_list {
        vldblist node;
    };
    typedef struct vldb_list vldb_list;
    bool_t xdr_vldb_list();

    #include <rx/rx_multi.h>
    #define multi_VL_ReplaceEntry(Volid, voltype, newentry, ReleaseType) \
        multi_Body(StartVL_ReplaceEntry(multi_call, Volid, voltype,
                   newentry, ReleaseType), EndVL_ReplaceEntry(multi_call))

    typedef struct bulkentries {
        u_int bulkentries_len;
        vldbentry *bulkentries_val;
    } bulkentries;
    bool_t xdr_bulkentries();

    /* Opcode-related useful stats for package: VL_ */
    #define VL_LOWEST_OPCODE        501
    #define VL_HIGHEST_OPCODE       506
    #define VL_NUMBER_OPCODES       6

Notice that all structures are automatically typedef'ed and all consts are converted to #defines. Some data structures, such as bulkentries, are taken from procedure params (from ListAttributes proc). Thus, this should be kept in mind when creating stubs piecemeal with rxgen (i.e., using the -c, -h, -C, or -S flags). Also, one of the side effects of the multi option (in ReplaceEntry proc) is the generation of the multi_VL_ReplaceEntry above.

XDR routines for structures (vldbint.xdr.c)

    /* Machine generated file -- Do NOT edit */

    #include <rx/xdr.h>
    #include "vldbint.h"

    #include "vl_opcodes.h"  /* directly to other places */

    bool_t
    xdr_vldbentry(xdrs, objp)
        XDR *xdrs;
        vldbentry *objp;
    {
        if (!xdr_vector(xdrs, (char *)objp->name, MAXNAMELEN,
                        sizeof(char), xdr_char))
            return (FALSE);
        if (!xdr_long(xdrs, &objp->volumeType))
            return (FALSE);
        if (!xdr_long(xdrs, &objp->nServers))
            return (FALSE);
        if (!xdr_vector(xdrs, (char *)objp->serverNumber, MAXNSERVERS,
                        sizeof(long), xdr_long))
            return (FALSE);
        if (!xdr_vector(xdrs, (char *)objp->serverPartition,
                        MAXNSERVERS, sizeof(long), xdr_long))
            return (FALSE);
        if (!xdr_vector(xdrs, (char *)objp->serverFlags, MAXNSERVERS,
                        sizeof(long), xdr_long))
            return (FALSE);
        if (!xdr_vector(xdrs, (char *)objp->volumeId, MAXTYPES,
                        sizeof(u_long), xdr_u_long))
            return (FALSE);
        if (!xdr_long(xdrs, &objp->flags))
            return (FALSE);
        return (TRUE);
    }

    bool_t
    xdr_vldblist(xdrs, objp)
        XDR *xdrs;
        vldblist *objp;
    {
        if (!xdr_pointer(xdrs, (char **)objp,
                         sizeof(struct single_vldbentry), 
                         xdr_single_vldbentry))
            return (FALSE);
        return (TRUE);
    }

    bool_t
    xdr_single_vldbentry(xdrs, objp)
        XDR *xdrs;
        single_vldbentry *objp;
    {
        if (!xdr_vldbentry(xdrs, &objp->VldbEntry))
            return (FALSE);
        if (!xdr_vldblist(xdrs, &objp->next_vldb))
            return (FALSE);
        return (TRUE);
    }

    bool_t
    xdr_vldb_list(xdrs, objp)
        XDR *xdrs;
        vldb_list *objp;
    {
        if (!xdr_vldblist(xdrs, &objp->node))
            return (FALSE);
        return (TRUE);
    }

    bool_t
    xdr_bulkentries(xdrs, objp)
        XDR *xdrs;
        bulkentries *objp;
    {
        if (!xdr_array(xdrs, (char **)&objp->bulkentries_val,
                       (u_int *)&objp->bulkentries_len, MAXVLDBLEN,
                       sizeof(vldbentry), xdr_vldbentry))
            return (FALSE);
        return (TRUE);
    }

Note that the xdr_bulkentries() is automatically generated as a side effect of a procedure parameter declaration. Thus, if identical multiple type parameter declarations are used, then multiply-defined xdr_* stubs will be created! We felt this was a better alternative to having the rxgen programmer deal with types such as bulkentries_1, bulkentries_2...

Client-Side stub routines (vldbint.cs.c)

    /* Machine generated file -- Do NOT edit */

    #include <rx/xdr.h>
    #include <rx/rx.h>
    #include <afs/rxgen_consts.h>
    #include "vldbint.h"

    #include "vl_opcodes.h"  /* directly to other places */

    int VL_CreateEntry(z_conn, Volid, newentry)
        register struct rx_connection *z_conn;
        long Volid;
        vldbentry * newentry;
    {
        struct rx_call *z_call = rx_NewCall(z_conn);
        static int z_op = 501;
        int z_result;
        XDR z_xdrs;

        xdrrx_create(&z_xdrs, z_call, XDR_ENCODE);

        /* Marshal the arguments */
        if ((!xdr_int(&z_xdrs, &z_op))
             || (!xdr_long(&z_xdrs, &Volid))
             || (!xdr_vldbentry(&z_xdrs, newentry))) {
                z_result = RXGEN_CC_MARSHAL;
                goto fail;
        }

        z_result = RXGEN_SUCCESS;
    fail:
        return rx_EndCall(z_call, z_result);
    }

    int VL_GetEntryByName(z_conn, volumename, entry)
        register struct rx_connection *z_conn;
        char * volumename;
        vldbentry * entry;
    {
        struct rx_call *z_call = rx_NewCall(z_conn);
        static int z_op = 504;
        int z_result;
        XDR z_xdrs;

        xdrrx_create(&z_xdrs, z_call, XDR_ENCODE);

        /* Marshal the arguments */
        if ((!xdr_int(&z_xdrs, &z_op))
             || (!xdr_string(&z_xdrs, &volumename, 65))) {
                z_result = RXGEN_CC_MARSHAL;
                goto fail;
        }

        /* Un-marshal the reply arguments */
        z_xdrs.x_op = XDR_DECODE;
        if ((!xdr_vldbentry(&z_xdrs, entry))) {
                z_result = RXGEN_CC_UNMARSHAL;
                goto fail;
        }

        z_result = RXGEN_SUCCESS;
    fail:
        return rx_EndCall(z_call, z_result);
    }

    int VL_GetNewVolumeId(z_conn, bumpcount, newvolumid)
        register struct rx_connection *z_conn;
        long bumpcount;
        long * newvolumid;
    {
        struct rx_call *z_call = rx_NewCall(z_conn);
        static int z_op = 505;
        int z_result;
        XDR z_xdrs;

        xdrrx_create(&z_xdrs, z_call, XDR_ENCODE);

        /* Marshal the arguments */
        if ((!xdr_int(&z_xdrs, &z_op))
             || (!xdr_long(&z_xdrs, &bumpcount))) {
                z_result = RXGEN_CC_MARSHAL;
                goto fail;
        }

        /* Un-marshal the reply arguments */
        z_xdrs.x_op = XDR_DECODE;
        if ((!xdr_long(&z_xdrs, newvolumid))) {
                z_result = RXGEN_CC_UNMARSHAL;
                goto fail;
        }

        z_result = RXGEN_SUCCESS;
    fail:
        return rx_EndCall(z_call, z_result);
    }

    int VL_ReplaceEntry(z_conn, Volid, voltype, newentry, ReleaseType)
        register struct rx_connection *z_conn;
        long Volid, voltype, ReleaseType;
        vldbentry * newentry;
    {
        struct rx_call *z_call = rx_NewCall(z_conn);
        static int z_op = 506;
        int z_result;
        XDR z_xdrs;

        xdrrx_create(&z_xdrs, z_call, XDR_ENCODE);

        /* Marshal the arguments */
        if ((!xdr_int(&z_xdrs, &z_op))
             || (!xdr_long(&z_xdrs, &Volid))
             || (!xdr_long(&z_xdrs, &voltype))
             || (!xdr_vldbentry(&z_xdrs, newentry))
             || (!xdr_long(&z_xdrs, &ReleaseType))) {
                z_result = RXGEN_CC_MARSHAL;
                goto fail;
        }

        z_result = RXGEN_SUCCESS;
    fail:
        return rx_EndCall(z_call, z_result);
    }

    int StartVL_ReplaceEntry(z_call, Volid, voltype, newentry, ReleaseType)
        register struct rx_call *z_call;
        long Volid, voltype, ReleaseType;
        vldbentry * newentry;
    {
        static int z_op = 506;
        int z_result;
        XDR z_xdrs;

        xdrrx_create(&z_xdrs, z_call, XDR_ENCODE);

        /* Marshal the arguments */
        if ((!xdr_int(&z_xdrs, &z_op))
             || (!xdr_long(&z_xdrs, &Volid))
             || (!xdr_long(&z_xdrs, &voltype))
             || (!xdr_vldbentry(&z_xdrs, newentry))
             || (!xdr_long(&z_xdrs, &ReleaseType))) {
                z_result = RXGEN_CC_MARSHAL;
                goto fail;
        }

        z_result = RXGEN_SUCCESS;
    fail:
        return z_result;
    }

    int EndVL_ReplaceEntry(z_call)
        register struct rx_call *z_call;
    {
        int z_result;
        XDR z_xdrs;

        z_result = RXGEN_SUCCESS;
    fail:
        return z_result;
    }

    int VL_ListAttributes(z_conn, attributes, nentries, bulkentries_1)
        register struct rx_connection *z_conn;
        VldbListByAttributes * attributes;
        long * nentries;
        bulkentries * bulkentries_1;
    {
        struct rx_call *z_call = rx_NewCall(z_conn);
        static int z_op = 511;
        int z_result;
        XDR z_xdrs;

        xdrrx_create(&z_xdrs, z_call, XDR_ENCODE);

        /* Marshal the arguments */
        if ((!xdr_int(&z_xdrs, &z_op))
             || (!xdr_VldbListByAttributes(&z_xdrs, attributes))) {
                z_result = RXGEN_CC_MARSHAL;
                goto fail;
        }

        /* Un-marshal the reply arguments */
        z_xdrs.x_op = XDR_DECODE;
        if ((!xdr_long(&z_xdrs, nentries))
             || (!xdr_bulkentries(&z_xdrs, bulkentries_1))) {
                z_result = RXGEN_CC_UNMARSHAL;
                goto fail;
        }

        z_result = RXGEN_SUCCESS;
    fail:
        return rx_EndCall(z_call, z_result);
    }

    int VL_LinkedList(z_conn, attributes, nentries, linkedentries)
        register struct rx_connection *z_conn;
        VldbListByAttributes * attributes;
        long * nentries;
        vldb_list * linkedentries;
    {
        struct rx_call *z_call = rx_NewCall(z_conn);
        static int z_op = 512;
        int z_result;
        XDR z_xdrs;

        xdrrx_create(&z_xdrs, z_call, XDR_ENCODE);

        /* Marshal the arguments */
        if ((!xdr_int(&z_xdrs, &z_op))
             || (!xdr_VldbListByAttributes(&z_xdrs, attributes))) {
                z_result = RXGEN_CC_MARSHAL;
                goto fail;
        }

        /* Un-marshal the reply arguments */
        z_xdrs.x_op = XDR_DECODE;
        if ((!xdr_long(&z_xdrs, nentries))
             || (!xdr_vldb_list(&z_xdrs, linkedentries))) {
                z_result = RXGEN_CC_UNMARSHAL;
                goto fail;
        }

        z_result = RXGEN_SUCCESS;
    fail:
        return rx_EndCall(z_call, z_result);
    }

Notice the side effect of the multi feature (three different modules for ReplaceEntry proc).

Server-Side stub routines (vldbint.ss.c)

    /* Machine generated file -- Do NOT edit */

    #include <rx/xdr.h>
    #include <rx/rx.h>
    #include <afs/rxgen_consts.h>
    #include "vldbint.h"

    #include "vl_opcodes.h"  /* directly to other places */

    long _VL_CreateEntry(z_call, z_xdrs)
        struct rx_call *z_call;
        XDR *z_xdrs;
    {
        long z_result;
        long Volid;
        vldbentry newentry;

        if ((!xdr_long(z_xdrs, &Volid))
             || (!xdr_vldbentry(z_xdrs, &newentry))) {
                z_result = RXGEN_SS_UNMARSHAL;
                goto fail;
        }

        z_result = VL_CreateEntry(z_call, Volid, &newentry);
    fail:
        return z_result;
    }

    long _VL_GetEntryByName(z_call, z_xdrs)
        struct rx_call *z_call;
        XDR *z_xdrs;
    {
        long z_result;
        char *volumename = (char *)0;
        vldbentry entry;

        if ((!xdr_string(z_xdrs, &volumename, 65))) {
                z_result = RXGEN_SS_UNMARSHAL;
                goto fail;
        }

        z_result = VL_GetEntryByName(z_call, &volumename, &entry);
        z_xdrs->x_op = XDR_ENCODE;
        if ((!xdr_vldbentry(z_xdrs, &entry)))
                z_result = RXGEN_SS_MARSHAL;
    fail:
        z_xdrs->x_op = XDR_FREE;
        if (!xdr_string(z_xdrs, &volumename, 65)) goto fail1;
        return z_result;
    fail1:
        return RXGEN_SS_XDRFREE;
    }

    long _VL_GetNewVolumeId(z_call, z_xdrs)
        struct rx_call *z_call;
        XDR *z_xdrs;
    {
        long z_result;
        long bumpcount;
        long newvolumid;

        if ((!xdr_long(z_xdrs, &bumpcount))) {
                z_result = RXGEN_SS_UNMARSHAL;
                goto fail;
        }

        z_result = VL_GetNewVolumeId(z_call, bumpcount, &newvolumid);
        z_xdrs->x_op = XDR_ENCODE;
        if ((!xdr_long(z_xdrs, &newvolumid)))
                z_result = RXGEN_SS_MARSHAL;
    fail:
        return z_result;
    }

    long _VL_ReplaceEntry(z_call, z_xdrs)
        struct rx_call *z_call;
        XDR *z_xdrs;
    {
        long z_result;
        long Volid, voltype, ReleaseType;
        vldbentry newentry;

        if ((!xdr_long(z_xdrs, &Volid))
             || (!xdr_long(z_xdrs, &voltype))
             || (!xdr_vldbentry(z_xdrs, &newentry))
             || (!xdr_long(z_xdrs, &ReleaseType))) {
                z_result = RXGEN_SS_UNMARSHAL;
                goto fail;
        }

        z_result = VL_ReplaceEntry(z_call, Volid, voltype, &newentry,
                                   ReleaseType);
    fail:
        return z_result;
    }

    long _VL_ListAttributes(z_call, z_xdrs)
        struct rx_call *z_call;
        XDR *z_xdrs;
    {
        long z_result;
        VldbListByAttributes attributes;
        long nentries;
        bulkentries bulkentries_1;

        if ((!xdr_VldbListByAttributes(z_xdrs, &attributes))) {
                z_result = RXGEN_SS_UNMARSHAL;
                goto fail;
        }

        z_result = VL_ListAttributes(z_call, &attributes, &nentries,
                                     &bulkentries_1);
        z_xdrs->x_op = XDR_ENCODE;
        if ((!xdr_long(z_xdrs, &nentries))
             || (!xdr_bulkentries(z_xdrs, &bulkentries_1)))
                z_result = RXGEN_SS_MARSHAL;
    fail:
        z_xdrs->x_op = XDR_FREE;
        if (!xdr_bulkentries(z_xdrs, &bulkentries_1)) goto fail1;
        return z_result;
    fail1:
        return RXGEN_SS_XDRFREE;
    }

    long _VL_LinkedList(z_call, z_xdrs)
        struct rx_call *z_call;
        XDR *z_xdrs;
    {
        long z_result;
        VldbListByAttributes attributes;
        long nentries;
        vldb_list linkedentries;

        if ((!xdr_VldbListByAttributes(z_xdrs, &attributes))) {
                z_result = RXGEN_SS_UNMARSHAL;
                goto fail;
        }

        z_result = VL_LinkedList(z_call, &attributes, &nentries,
                                 &linkedentries);
        z_xdrs->x_op = XDR_ENCODE;
        if ((!xdr_long(z_xdrs, &nentries))
             || (!xdr_vldb_list(z_xdrs, &linkedentries)))
                z_result = RXGEN_SS_MARSHAL;
    fail:
        return z_result;
    }

    long _VL_CreateEntry();
    long _VL_GetEntryByName();
    long _VL_GetNewVolumeId();
    long _VL_ReplaceEntry();
    long _VL_ListAttributes();
    long _VL_LinkedList();

    static long (*StubProcsArray0[])() = {_VL_CreateEntry,
        _VL_GetEntryByName, _VL_GetNewVolumeId, _VL_ReplaceEntry,
        _VL_ListAttributes, _VL_LinkedList};

    VL_ExecuteRequest(z_call)
        register struct rx_call *z_call;
    {
        int op;
        XDR z_xdrs;
        long z_result;

        xdrrx_create(&z_xdrs, z_call, XDR_DECODE);
        if (!xdr_int(&z_xdrs, &op))
            z_result = RXGEN_DECODE;
        else if (op < VL_LOWEST_OPCODE || op > VL_HIGHEST_OPCODE)
            z_result = RXGEN_OPCODE;
        else
            z_result = (*StubProcsArray0[op - VL_LOWEST_OPCODE])
                (z_call, &z_xdrs);
        return z_result;
    }

If there were gaps in the procedures' opcode sequence the code for VL_ExecuteRequest() routine would be have been drastically different (it would have been a case statement for each procedure).

NOTES

rxgen is implemented from Sun's rpcgen utility.

When the %#include <include file> feature is used make sure that you don't have any rxgen language features (i.e. %#defines) since you'll get syntax errors during compilations..

Since this is an ongoing project many of the above may change/disappear without a major warning.

SEE ALSO

Rxgen Syntax Summary: Summary description of rxgen's grammar.

Rpcgen Programming Guide: Sun's RPC protocol compiler. rxgen was implemented as an extension to that compiler.

External Data Representation: Sun Technical Notes: Detailed examples in using XDR.

RPCL Syntax Summary: Summary of Sun's Remote Procedure Call Language.

Rx: An extended Remote Procedure Call Protocol.

rgen: An earlier version of a similar stub generator used for the R RPC protocol.

COPYRIGHT

IBM Corporation 2000. <http://www.ibm.com/> All Rights Reserved.

This documentation is covered by the IBM Public License Version 1.0. It was converted from the original TeX rxgen manual to POD by Russ Allbery.