1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
use crate::{convert, ops};
/// Used to tell an operation whether it should exit early or go on as usual.
///
/// This is used when exposing things (like graph traversals or visitors) where
/// you want the user to be able to choose whether to exit early.
/// Having the enum makes it clearer -- no more wondering "wait, what did `false`
/// mean again?" -- and allows including a value.
///
/// # Examples
///
/// Early-exiting from [`Iterator::try_for_each`]:
/// ```
/// use std::ops::ControlFlow;
///
/// let r = (2..100).try_for_each(|x| {
/// if 403 % x == 0 {
/// return ControlFlow::Break(x)
/// }
///
/// ControlFlow::Continue(())
/// });
/// assert_eq!(r, ControlFlow::Break(13));
/// ```
///
/// A basic tree traversal:
/// ```no_run
/// use std::ops::ControlFlow;
///
/// pub struct TreeNode<T> {
/// value: T,
/// left: Option<Box<TreeNode<T>>>,
/// right: Option<Box<TreeNode<T>>>,
/// }
///
/// impl<T> TreeNode<T> {
/// pub fn traverse_inorder<B>(&self, mut f: impl FnMut(&T) -> ControlFlow<B>) -> ControlFlow<B> {
/// if let Some(left) = &self.left {
/// left.traverse_inorder(&mut f)?;
/// }
/// f(&self.value)?;
/// if let Some(right) = &self.right {
/// right.traverse_inorder(&mut f)?;
/// }
/// ControlFlow::Continue(())
/// }
/// }
/// ```
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ControlFlow<B, C = ()> {
/// Move on to the next phase of the operation as normal.
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
#[lang = "Continue"]
Continue(C),
/// Exit the operation without running subsequent phases.
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
#[lang = "Break"]
Break(B),
// Yes, the order of the variants doesn't match the type parameters.
// They're in this order so that `ControlFlow<A, B>` <-> `Result<B, A>`
// is a no-op conversion in the `Try` implementation.
}
#[unstable(feature = "try_trait_v2", issue = "84277")]
impl<B, C> ops::Try for ControlFlow<B, C> {
type Output = C;
type Residual = ControlFlow<B, convert::Infallible>;
#[inline]
fn from_output(output: Self::Output) -> Self {
ControlFlow::Continue(output)
}
#[inline]
fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
match self {
ControlFlow::Continue(c) => ControlFlow::Continue(c),
ControlFlow::Break(b) => ControlFlow::Break(ControlFlow::Break(b)),
}
}
}
#[unstable(feature = "try_trait_v2", issue = "84277")]
impl<B, C> ops::FromResidual for ControlFlow<B, C> {
#[inline]
fn from_residual(residual: ControlFlow<B, convert::Infallible>) -> Self {
match residual {
ControlFlow::Break(b) => ControlFlow::Break(b),
}
}
}
impl<B, C> ControlFlow<B, C> {
/// Returns `true` if this is a `Break` variant.
///
/// # Examples
///
/// ```
/// #![feature(control_flow_enum)]
/// use std::ops::ControlFlow;
///
/// assert!(ControlFlow::<i32, String>::Break(3).is_break());
/// assert!(!ControlFlow::<String, i32>::Continue(3).is_break());
/// ```
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn is_break(&self) -> bool {
matches!(*self, ControlFlow::Break(_))
}
/// Returns `true` if this is a `Continue` variant.
///
/// # Examples
///
/// ```
/// #![feature(control_flow_enum)]
/// use std::ops::ControlFlow;
///
/// assert!(!ControlFlow::<i32, String>::Break(3).is_continue());
/// assert!(ControlFlow::<String, i32>::Continue(3).is_continue());
/// ```
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn is_continue(&self) -> bool {
matches!(*self, ControlFlow::Continue(_))
}
/// Converts the `ControlFlow` into an `Option` which is `Some` if the
/// `ControlFlow` was `Break` and `None` otherwise.
///
/// # Examples
///
/// ```
/// #![feature(control_flow_enum)]
/// use std::ops::ControlFlow;
///
/// assert_eq!(ControlFlow::<i32, String>::Break(3).break_value(), Some(3));
/// assert_eq!(ControlFlow::<String, i32>::Continue(3).break_value(), None);
/// ```
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn break_value(self) -> Option<B> {
match self {
ControlFlow::Continue(..) => None,
ControlFlow::Break(x) => Some(x),
}
}
/// Maps `ControlFlow<B, C>` to `ControlFlow<T, C>` by applying a function
/// to the break value in case it exists.
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn map_break<T, F>(self, f: F) -> ControlFlow<T, C>
where
F: FnOnce(B) -> T,
{
match self {
ControlFlow::Continue(x) => ControlFlow::Continue(x),
ControlFlow::Break(x) => ControlFlow::Break(f(x)),
}
}
}
/// These are used only as part of implementing the iterator adapters.
/// They have mediocre names and non-obvious semantics, so aren't
/// currently on a path to potential stabilization.
impl<R: ops::Try> ControlFlow<R, R::Output> {
/// Create a `ControlFlow` from any type implementing `Try`.
#[inline]
pub(crate) fn from_try(r: R) -> Self {
match R::branch(r) {
ControlFlow::Continue(v) => ControlFlow::Continue(v),
ControlFlow::Break(v) => ControlFlow::Break(R::from_residual(v)),
}
}
/// Convert a `ControlFlow` into any type implementing `Try`;
#[inline]
pub(crate) fn into_try(self) -> R {
match self {
ControlFlow::Continue(v) => R::from_output(v),
ControlFlow::Break(v) => v,
}
}
}
impl<B> ControlFlow<B, ()> {
/// It's frequently the case that there's no value needed with `Continue`,
/// so this provides a way to avoid typing `(())`, if you prefer it.
///
/// # Examples
///
/// ```
/// #![feature(control_flow_enum)]
/// use std::ops::ControlFlow;
///
/// let mut partial_sum = 0;
/// let last_used = (1..10).chain(20..25).try_for_each(|x| {
/// partial_sum += x;
/// if partial_sum > 100 { ControlFlow::Break(x) }
/// else { ControlFlow::CONTINUE }
/// });
/// assert_eq!(last_used.break_value(), Some(22));
/// ```
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub const CONTINUE: Self = ControlFlow::Continue(());
}
impl<C> ControlFlow<(), C> {
/// APIs like `try_for_each` don't need values with `Break`,
/// so this provides a way to avoid typing `(())`, if you prefer it.
///
/// # Examples
///
/// ```
/// #![feature(control_flow_enum)]
/// use std::ops::ControlFlow;
///
/// let mut partial_sum = 0;
/// (1..10).chain(20..25).try_for_each(|x| {
/// if partial_sum > 100 { ControlFlow::BREAK }
/// else { partial_sum += x; ControlFlow::CONTINUE }
/// });
/// assert_eq!(partial_sum, 108);
/// ```
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub const BREAK: Self = ControlFlow::Break(());
}